Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Prosthet Dent ; 130(2): 255.e1-255.e10, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37355405

RESUMEN

STATEMENT OF PROBLEM: Cobalt chromium (Co-Cr) alloys possess beneficial mechanical properties because alloys, even in thin sections, can resist high mastication forces and exhibit an acceptable bond to the surface porcelain layer. Traditional manufacturing techniques of Co-Cr alloys such as casting have been replaced with newer fabrication techniques, such as milling, laser melting, and presintered milling. Despite scarce documentation, these new manufacturing techniques are being used to fabricate dental and implant constructions. PURPOSE: This in vitro study investigates the hardness, yield strength, elastic modulus, and microstructure of the most commonly used Co-Cr alloys for fixed prosthodontics based on manufacturing technique. In addition, this study investigates the effect of heat treatment on the mechanical properties and microstructure of these materials. MATERIAL AND METHODS: Five Co-Cr alloys were included (dumbbell and rectangular shaped) based on four manufacturing techniques: cast, milled, laser melted, and presintered milled. Commercially pure titanium grade 4 and titanium-6 aluminum-4 vanadium ELI (extra low interstitial) were included for comparison, and yield strength and elongation after fracture were evaluated. The specimens were tested for hardness using the Vickers test and for elastic modulus using a nondestructive impulse excitation technique. The microstructure of selected specimens was analyzed using focused ion beam-scanning electron microscopy (FIB-SEM) and energy dispersive X-ray spectroscopy (EDS). RESULTS: The mechanical properties depend on the manufacturing technique used; the laser-melted and presintered Co-Cr specimens demonstrated the highest mechanical properties, followed by the milled and cast groups. Both the laser-melted and the presintered milled Co-Cr specimens showed smaller grain size compared with the cast and milled Co-Cr specimens. The titanium-6 aluminum-4 vanadium ELI demonstrated higher hardness and yield strength compared to commercially pure titanium grade 4. No major differences were observed for the selected materials regarding the mechanical properties and microstructural appearance after heat treatment. CONCLUSIONS: The laser melting and presintered milling techniques produced higher mechanical properties compared with the cast and milled Co-Cr. These findings were confirmed through microstructural analysis with respect to the grain size, precipitation, and number of pores.


Asunto(s)
Aleaciones de Cromo , Titanio , Aleaciones de Cromo/química , Aluminio , Prostodoncia , Vanadio , Aleaciones , Propiedades de Superficie , Ensayo de Materiales , Cobalto/química , Aleaciones de Cerámica y Metal/química , Cromo
2.
Materials (Basel) ; 16(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903125

RESUMEN

Few systematic studies on the correlation between alloy microstructure and mechanical failure of the AlSi10Mg alloy produced by laser-based powder bed fusion (L-PBF) are available in the literature. This work investigates the fracture mechanisms of the L-PBF AlSi10Mg alloy in as-built (AB) condition and after three different heat treatments (T5 (4 h at 160 °C), standard T6 (T6B) (1 h at 540 °C followed by 4 h at 160 °C), and rapid T6 (T6R) (10 min at 510 °C followed by 6 h at 160 °C)). In-situ tensile tests were conducted with scanning electron microscopy combined with electron backscattering diffraction. In all samples the crack nucleation was at defects. In AB and T5, the interconnected Si network fostered damage at low strain due to the formation of voids and the fragmentation of the Si phase. T6 heat treatment (T6B and T6R) formed a discrete globular Si morphology with less stress concentration, which delayed the void nucleation and growth in the Al matrix. The analysis empirically confirmed the higher ductility of the T6 microstructure than that of the AB and T5, highlighting the positive effects on the mechanical performance of the more homogeneous distribution of finer Si particles in T6R.

3.
J Biotechnol ; 219: 117-23, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26712478

RESUMEN

Lignin-carbohydrate complexes (LCCs) are in part responsible for the recalcitrance of lignocellulosics in relation to industrial utilization of biomass for biofuels. Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 have been proposed to be able to degrade ester LCCs between glucuronic acids in xylans and lignin alcohols. By means of synthesized complex LCC model substrates we provide kinetic data suggesting a preference of fungal GEs for esters of bulky arylalkyl alcohols such as ester LCCs. Furthermore, using natural corn fiber substrate we report the first examples of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase/hemicellulase preparations. These results emphasize the potential of GEs for delignification of biomass thereby improving the overall yield of fermentable sugars for biofuel production.


Asunto(s)
Esterasas/metabolismo , Ácido Glucurónico/metabolismo , Lignina/metabolismo , Polyporaceae/enzimología , Trichoderma/enzimología , Biomasa , Proteínas Fúngicas/metabolismo , Hidrólisis , Cinética , Proteínas de Plantas/metabolismo , Polyporaceae/química , Polyporaceae/aislamiento & purificación , Temperatura , Trichoderma/química , Trichoderma/aislamiento & purificación , Zea mays/metabolismo
4.
Biotechnol Biofuels ; 6(1): 5, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23336604

RESUMEN

BACKGROUND: It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. RESULTS: It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. CONCLUSIONS: To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

5.
Appl Microbiol Biotechnol ; 86(1): 143-54, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19756584

RESUMEN

A GH3 beta-glucosidase (BGL) from Penicillium brasilianum was purified to homogeneity after cultivation on a cellulose and xylan rich medium. The BGL was identified in a genomic library, and it was successfully expressed in Aspergillus oryzae. The BGL had excellent stability at elevated temperatures with no loss in activity after 24 h of incubation at 60 degrees C at pH 4-6, and the BGL was shown to have significantly higher stability at these conditions in comparison to Novozym 188 and to other fungal GH3 BGLs reported in the literature. The BGL had significant lower affinity for cellobiose compared with the artificial substrate para-nitrophenyl-beta-D-glucopyranoside (pNP-Glc) and further, pronounced substrate inhibition using pNP-Glc. Kinetic studies demonstrated the high importance of using cellobiose as substrate and glucose as inhibitor to describe the inhibition kinetics of BGL taking place during cellulose hydrolysis. A novel assay was developed to characterize this glucose inhibition on cellobiose hydrolysis. The assay uses labelled glucose-13C6 as inhibitor and subsequent mass spectrometry analysis to quantify the hydrolysis rates.


Asunto(s)
Celulosa/metabolismo , Penicillium/enzimología , beta-Glucosidasa , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Biotecnología/métodos , Celulosa/química , Medios de Cultivo , Estabilidad de Enzimas , Biblioteca de Genes , Glucosa/química , Glucosa/farmacología , Calor , Concentración de Iones de Hidrógeno , Cinética , Penicillium/genética , Penicillium/crecimiento & desarrollo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura , Xilanos/metabolismo , beta-Glucosidasa/genética , beta-Glucosidasa/aislamiento & purificación , beta-Glucosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...